Enumeration of digraphs with given number of vertices of odd out-degree and vertices of odd in-degree

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetravalent edge-transitive Cayley graphs with odd number of vertices

A characterisation is given of edge-transitive Cayley graphs of valency 4 on odd number of vertices. The characterisation is then applied to solve several problems in the area of edge-transitive graphs: answering a question proposed by Xu (1998) regarding normal Cayley graphs; providing a method for constructing edge-transitive graphs of valency 4 with arbitrarily large vertex-stabiliser; const...

متن کامل

Vertices of given degree in a random graph

The asymptotic distributions of the number of vertices of given degree in random graph K n,p are given. By using the method of Poisson convergence, Poisson and normal distributions are obtained.

متن کامل

Double Dudeney sets for an odd number of vertices

A double Dudeney set in Kn is a multiset of Hamilton cycles in Kn having the property that each 2-path in Kn lies in exactly two of the cycles. In this paper, we construct a double Dudeney set in Kn when n = p1p2 · · · ps + 2, where p1, p2, . . . , ps are different odd prime numbers and s is a natural number.

متن کامل

Vertices of given degree in series-parallel graphs

We show that the number of vertices of a given degree k in several kinds of series-parallel labelled graphs of size n satisfy a central limit theorem with mean and variance proportional to n, and quadratic exponential tail estimates. We further prove a corresponding theorem for the number of nodes of degree two in labelled planar graphs. The proof method is based on generating functions and sin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1991

ISSN: 0012-365X

DOI: 10.1016/0012-365x(91)90096-k